

Hüseyin Abut FERP Professor of Electrical & Computer Engineering San Diego State University, San Diego, CA 92182-1309

Preface

The notion of communication can be described simply as the transmission of information from a given source to a particular destination through a succession of processing stages. Advances in communication systems, computers, high-speed information networks, microelectronics, and multimedia systems have made it possible to send messages over great distances easily, reliably, and most importantly, economically. They have also made it possible to send large amounts of data, both natural and man-made, quickly from one point to another with a very small probability of error.

The objective of these lecture notes is to present an introductory level treatment of traditional as well as current analog, pulse, and digital communication systems with many examples ranging from classical radio systems to emerging applications including many computer simulations completely solved using *de facto* industry standard Matlab[®] Package¹. Self-explanatory source codes, i.e., m-files as well as outputs for examples and exercises using this package are provided. In addition, a number of excellent examples are included in the body of the text with acknowledgement of the original authors or their publishers.

The first six chapters of these lecture notes is currently being used at San Diego State University and Sabanci University, Istanbul, Turkey in third-year undergraduate courses upon completion of an introductory course on Signals and Systems. Upon successful completion of these courses students normally enroll in subsequent courses in Communications Engineering and the Digital Signal Processing programs. The second half of the text is currently being designed for the second course in communications where the concentration will be on base-band and band-pass digital communication systems, communication under noisy regimes and new applications in the wireless and wired infrastructures.

¹ Matlab is a copyrighted Software Simulation Platform by Mathworks, Inc. This textbook uses the latest edition of the Professional Release with Simulink. Both the Sun workstations and the PCs in the College of Engineering Laboratories have site licences. Students normally use the Students Version of the same edition. The implementations of all the Matlab based exercises can be solved using the Student Edition.

CONTENTS (Draft; Only Chapters 1-2 are current, rest in progress)	Page
Chapter 1. Introduction to Communication Systems and Information Theory	5
 1.1 Definitions and Terminology 1.2 Signals and Classification 1.2.1 Deterministic and Random Signals (Continuous Signals) 1.2.2 Frequency Band Classification 1.2.3 Baseband/Passband Classification 1.2.4 Energy and Power Signals 1.2.5 Time Signature Classification 1.2.6 Discrete-Time Continuous-Amplitude (Discrete Signals or Sampled Signals) 1.2.7 Sampling of Analog Signals (A/D and D/A Conversion) 1.2.8 Sampling (Nyquist) Theorem 	6 10 10 11 12 12 12 12 13
 1.3 Quantization and Coding 1.3.1 Sampling and Coding Performance Measures (SNR and Transmission Rate) 1.3.2 Analog versus Digital Communication 	14 15 16
1.4 Principle of Modulation	18
 1.5 Communication System Resources and Performance Measures 1.5.1 Signal to Noise Ratio (SNR) 1.5.2 Bandwidth 	20 21 23
 1.7 Information Theory Bounds on Communication 1.7.1 Self-Information and Entropy 1.7.2 Shannon Source Coding Theorem 1.7.3 Channel Capacity 1.7.4 Shannon Channel Coding Theorem 	24 24 25 26 26
Chapter 2. Analysis of Signals and Systems 2.1 Line Spectra and Fourier Series 2.1.1 Phasors and Line Spectra 2.1.2 Fourier Series 2.1.3 Important Signals used in Communications 2.1.4 Discrete Sinusoidal Signal 2.1.5 Dirichlet Existence Conditions and Gibbs Phenomenon 2.1.6 Parseval's Power Theorem and Superposition	28 28 32 32 35 39 39
2.2 Fourier Transform for Continuous Signals	39
 2.3 Time and Frequency Relations 2.3.1 Superposition Theorem 2.3.2 Time Delay 2.3.3 Scale Change 2.3.4 Frequency Translation and Modulation 2.3.5 Differentiation and Integration in Time-Domain 	44 44 44 44 44
2.4 Convolution	45
2.5 Modulation Theorem	50

 2.6 Discrete-Time Fourier Transform and its Inverse 2.6.1 Forward DTFT 2,6,2 Inverse DTFT 2.6.3 Convergence of DTFT 2.6.4 DTFT Examples 	51 51 51 51 52
 2.7 Discrete Fourier Transform (DFT) and its Inverse 2.7.1 DFT 2.7.2 DFT Examples 	53 53 53
Chapter 3. Communication in Noiseless and Noisy Channel	54

3

Chapter 4. Amplitude Modulation Systems

Chapter 5. Angle Modulation Systems

Chapter 6. Pulse Modulation Systems

Appendices

Appendix A: Mathematical Facts and Fourier Analysis

Appendix B: Supplementary Problems on Signal Analysis Appendix C: Supplementary Problems on Modulation Systems Appendix D: Supplementary Problems on Pulse Modulation