Chapter 1 - Probability Models

Mathematical Models

- Experiments: Costly way of testing a design or solve a problem.
- Model: Approximate representation of a physical situation.
- Useful Model: Able to explain all relevant aspects of a given phenomenon.
- Mathematical Models: If observational phenomenon has measurable properties then a mathematical model consisting of a set of assumptions about the system is employed.
Conditions under which an experiment is performed and a model is assumed are very critical. Change the assumptions then a "good" model can be a great fiasco.

- Computer Simulation Models: They mimic or simulate the dynamics of a system
- Deterministic Models: Lab and textbook cases, conditions determine outcome

1. Circuit Theory
2. Ohm's Law
3. Kirchoffs' Laws
4. Transforms: FFT; Laplace Transforms
5. Convolution :Input/output behavior of systems with well-defined coefficients

- Probabilistic (Stochastic, Random) Models: involve phenomena that exhibit unpredictable variation and randomness.

Ex: Urn with three balls; (0,1,2 marked)
-- Outcome: A number from the set $\{0,1,2\}$
-- Sample Space: All possible outcomes of an experiment: $S=\{0,1,2\}$

Statistical Regularity:
Relative Frequency: $\quad f_{k}(n)=\frac{N_{k}(n)}{n}$
n : \# of experiments under identical conditions;
k : Counter index
$\left.\begin{array}{l}N_{0} \text { : \# of "0" balls } \\ N_{1} \text { : \# of "1" balls } \\ N_{2} \text { : \# of " } 2 \text { " balls }\end{array}\right\}$ in n tries
Let $n \rightarrow \infty$ then $\lim _{n \rightarrow \infty} f_{k}(n)=P_{k}$; where $\mathbf{P}_{\mathbf{k}}$: probability of the outcome $\mathbf{E}_{\mathbf{k}}$.

Properties of Relative Frequency:
Suppose a random experiment has K possible outcomes: $\mathrm{S}=\{1,2, \ldots, K\}$. Then in " n " trials we have

$$
0 \leq N_{k}(n) \leq \mathrm{n} \quad \text { for } \mathrm{k}=1,2, \ldots, K \Rightarrow 0 \leq f_{k}(n) \leq 1
$$

and

$$
\sum_{k=1}^{N} N_{k}(n)=n \quad \text { which implies: } \quad \sum_{k=1}^{N} f_{k}(n)=1
$$

Event \equiv Any outcome of an experiment satisfying certain condition(s).
Ex: Consider the 3-ball urn experiment
A: even $=\{0,2\}$ then,

$$
f_{A}(n)=\frac{N_{0}(n)+N_{2}(n)}{n}=f_{0}(n)+f_{2}(n)
$$

Disjoint (mutually exlusive) events: If A or B can occur but not both, then

$$
f_{C}(n)=f_{A}(n)+f_{B}(n)
$$

Relative frequency of two disjoint events is the sum of their individual relative frequency.

Kolmogorov's axioms to form a Theory of Probability: Assumptions:

1. Random experiment has been defined and the sample space S has been identified.
2. A class of subsets of S has been specified.
3. Each event A has been assigned a number $\mathrm{P}(\mathrm{A})$ such that,
4. $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
5. $\quad \mathrm{P}(\mathrm{S})=1$
6. If A and B are mutually exclusive events then

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

Kolmogorov's axioms are sufficient to build a consistent Theory of Probability.

Example: Packet Voice Communication system Efficiency

Due to silences voice communication is very inefficient on dedicated lines. It is observed that only " $1 / 3$ " of the time actual speech goes through. How to increase this rate by using prob. approaches???
Solution: Error vs rate trade off in digital information (BCS) transmission/storage

$$
\left.\begin{array}{l}
0 \rightarrow 000 \\
1 \rightarrow 111
\end{array}\right\}+ \text { Majority Rule to make decision at the receiver. }
$$

If each bit has a $\quad P_{e}=10^{-3}$ due to this simple scheme, $\mathrm{P}_{\mathrm{e}} \rightarrow 3 \times 10^{-6}$.
Cost: Rate is decrease to $1 / 3$ of the original.
Binary Symmetric Channel with cross-over probability: $\varepsilon=\mathrm{P}_{\mathrm{e}}=10^{-3}$

Example: Signal Enhancement Using Filters

Given a signal $\mathrm{x}(\mathrm{t})$ corrupt with noise and has a Signal-to-Noise Ratio value SNR. If you filter this noisy signal with a properly designed -hopefully adaptive, filter to suppress noise, we obtain an enhanced signal, (smoothed by the filter.)

Example: Multi User Systems with Queues: Resource sharing

Terminals
Two performance curves for multi-user computer queuing studies:

Example: System Reliability: Cascade vs. Parallel Systems

Issues: Need of a clock vs. the system delay or throughput rate.

Ex: Prob. 1.1

Experiment: Selecting two balls in succession from an urn with 2 black +1 white ball without replacement.
a) Sample Space: $S=\{\mathrm{bb}, \mathrm{bw}, \mathrm{wb}\}$ If: $1^{\text {st }}$ ball is B , then $2^{\text {nd }}$ is B or W If: $1^{\text {st }}$ ball is W , then $2^{\text {nd }}$ is only B
b) With replacement: All outcomes are W or B, 2then
$S=\{b b, b w, w b, w w\}$
c) $f_{\text {ww }}(n)$ in part (a)?

Not possible to have W then $\mathrm{W} \Rightarrow f_{\mathrm{ww}}(n)=0$
$f_{\mathrm{ww}}(n)$ in part (b)?
$N_{\mathrm{w}}(n)=1 / 3$, since 1 W and 2 B balls always
Of these $1 / 3$ outcomes again $1 / 3$ are W since balls are replaced.
$\therefore f_{w w}(n)=(1 / 3) *(1 / 3)=1 / 9$
$2^{\text {nd }}$ draw is effected by the outcome of $1^{\text {st }}$ draw?
a) Yes

No.

