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Chapter 6: Stochastic (Random) Processes

Let outcomes & from S be such that, for & € S we assign a function of time
according to some rule:
X(t,E) wheret e |
1)  The graph of X(t,&) for a fixed & is called a realization.
2)  For each fixed ty the set X(t,&) isar.v.
= Indexed family of r.v. = Stochastic Process

e [f the index set “I” is If “I” is continuous, then it is a continuous-time
stochastic process.
e |f discrete-time then, we have a discrete-time stochastic process.

FIGURE &1
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Ex: 6.1 Random Binary Sequence
§ selected randomly in interval S = [0,1] bib,... binary expansion of & , then

£=¥yb27; whereb; e {0,1}
i=1
Define X(t,§) = b, n=1,2,... The result is a sequence of binary numbers.

Ex: 6.3 Find P[X(1,£)=0] and P[X(1,£)=0 and X(2,£)=1]
P[X(L&)=0]=Pl0< & <1/2]=1/2
PIX@L&)=0and X(2,&) =1]=Pll/4<&<1/2]=1/4

Sequence of k bits has subinterval of length 2.
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Ex: 6.2 Random Sinusoids

FIGURE &.28
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€ ininterval S =[-1,1]

Define X(t,&) =&cos(2nt)
~-o<t<ow

Amplitude versions

FIGURE B.3%

sz wilh rendan phasa

¢ ininterval S = [-n,7]
Define Y(t,§) = Cos(2nt+&)

Time-shifted versions
it

Ex: 6.4 Find pdf of X(to,§) and Y(to,&) of Ex: 6.2
o |[fcos(2nty) =0, X(te,§) =0 = f X (tg) () = (X)

o Else, X(to,§) is uniformly distributed in [-cos(2nty), cos(2nty)], since
X(to,€) is uniformly distributed in [-1,1]
¢ _ 0 0.W.
X(t) () = 1/ 2cos(27ty)| X <|cos(2zty)|

Note: pdf of X(to,&) depends on t,

FIGURE 5.3
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Y (t5,€) has an arcsine distribution (see Ex: 3.28).

1
fyi () =——+— |y|<1
Y (to) ”W

Note: pdf of Y(to,&) does not depend on t,
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Random Process Specification:
Let X3, Xy, ..., Xk be k r.v.’s obtained by sampling a Random Process X(t,§) at
times ty, ..., tx

xl - X(tl,&,) | x2 - x(tZlEJ) yerny Xk - X(tkré)

Then a stochastic (random) process is specified by the collection of k™ order joint
cdf:

F Xy X, O X2,X) = P[Xq < 3q, Xp < Xg,00 Xy < %]

If Stochastic Process is discrete then pmf can be used to specify Stochastic
Process

Py, x, (% X2, %) = P[X1 = X, X = Xg000s X = X |

If Stochastic Process is continuous-valued the pdf can be used to specify
Stochastic Process:

f X1 X, (X1, X2,...Xk )

A Stochastic Process X(t) has independent increments if for any k and any choice
of sampling instants:

t; <ty <...<t, therandom variables
X(t) = X(t1) ... X(ty) - X(tx.1) are independent

Then the joint pdf (pmf) of X(t;) ... X(tx) is given by the product of marginal
pdf (pmf).

A Stochastic Process is Markov if the future of the process given the present is
independent of the past:

f x(tk)(xk | X (t-1) = X1 X (t) = X1)
= fx(tk)(xk | X (t-1) = Xc-1)
If X(t) is continuous, but for discrete X(t) the expression becomes
PIX (i) =i | X (k1) =X —1,--» X (tr) =]
=P[X (tk) =X X (t-1)=xk 1]

These lecture notes are prepared by Hiiseyin Abut for Leon-Garcia text, August 2006



105

Mean function:
my (1) =E[X()]= | X £y (X)dx

In general the mean function is a function of time.

Autocorrelation function (joint moment):

RX (1.1) =EX @)X ®)]= [ 1 %y fx(1)x (1) (% V)oxdy

Autocovariance function: )
Cx (t,tp) = E[(X (t) - my (t) XX (t2) - m (t2))]
=Ry (tg,t2) —mx (t)mx (t2)

Variance of X(t):
o) =VARIX 0] = E[X () - mx (@) P[=c x (.0

Correlation Coefficient:
px(tl,tz)Z\/ Cx (4,t) with the property:  |py (t,t,)[<1

Cx (L, t)Cx (t,1p)

Ex: 6.6 Let X(t) = Acos2nrt. Find mean, autocorrelation and autocovariance
my (t) = E[Acos2zt]= E[A]cos 2zt

Note: The mean function is time-dependent.

Rx (t1,t2) = E[Acos 27ty Acos 2ty | = E lAZ Jcos 27ty cos 27ty

Cy () = Rx (t,tr) — My (t)my (ty) = {E[AZ]— E[A] 2}c0327rt1 cos 27ty
=VAR[A]cos 2ty cos2xt,
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Ex: 6.7 Let X(t) = cos(wt+0) , where 6 is uniformly distributed in (-x,x). Let us
find mean, autocorrelation and autocovariance.

my (t) = E[cos(wt + 8)] = 2i Tcos(wt +6)d6=0
T _rx
Cx (tg.t2) = Rx (t1,tp) = E[cos(wt; + &)cos(wty + 6)]

=L T Zfoos(wlt ~tp)+ coslw(y +1,)+ 20)}d0

T
= %cos w(t; —t;)  See Appendix A
Note: my(t) is constant and Cx(t,t;) depends only on |t;-t|.
Gaussian Random Process: X(t) is a Gaussian S.P. if the samples X; = X(t,),
..., Xk = X(ty) are jointly Gaussian with

_ 1 1 T -1
fxlxz__,xk(Xl,---'xk)—WeXp{—E(é—m) K (z—m)}

where
Cx () Cx(t,t)) -+ Cx(tty)
my (t)
N _|Cx(taty) Cx(ta,tp) -+ Cx(t2,tk)
m= ) K= : : :
e () : : :
Xk Cx (t,t1) Cx (t.t)
Ex 6.8 X, is iid Gaussian r.v. with m and c°, then
2 0 - 0
o . 0 : 2 . 2
K=| " ‘ =0l Because: Cy (tj,tj) = 0“5
.0 .0
0 0 o2

Then:

Py XX O Xic) =Wexp{ él(ﬁ—m)z /262}

= fxl(xl) f XZ(XZ)”' f Xy (Xk)
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Two or more variable Random Process:
1. For a pair of S.P. X(t) and Y(t") all possible joint density functions must be
specified for all choices of ty,...,txand t;',...,t".
2. X(t) and Y(t') are independent iff the vector r.v. X and Y are independent
for all k, j and all choices of ty,...,t, t/,... I
3. Crosscorrelation: Ryy(ty,tz) = E[X(t)Y(t2)]
X(t) and Y (t) processes are orthogonal if Rxy(ty,t;) =0 for all t;and
t
4. Cross-Covariance: ny(tl,tz) = ny(tl,tz) - mx(tl)my(tz)
X(t) and Y (t) are uncorrelated if Cxy(t1,t) =0 forall t;and t;
Ex: 6.9 Given a process with X (t) = cos(wt + &) and Y (t) = sin(wt + ) , where 6 is

uniformly distributed in [-z,z]. Find cross-covariance.
R xy (tlth) = E[COS(Wt]_ +(9)Sin(Wt2 +(9)]

_ E{—%sin(w(t1 —t2))+%sin(w(t1 +t2)+26’)}

_ _%sin(w(tl—'fz))

Ex: 6.10 Given an additive noise channel with a model: Y (t) = X (t)+ N(t) Find
cross-correlation. Assume that X(t) and N(t) are independent
ny (t,tp) = E[X t)Y (tz)] = E[X (tl){x (t;)+N (tz)}]
Ryy (tty) = E[X (t,) X (t,)]+ E[X (t,)N(t,)]
=Ry (t,tp) + E[X (tl)]E[N (tz)]
=Ry (t,ty) +my (t)my (t,)

Examples of Discrete-Time Stochastic Processes:

Given iid Stochastic Process: X, : discrete iid r.v. with common, m, c*
Then, X, — sequence is called iid R.P. and for any time instants ny, ...,ny
F XX (%0 XK = P[X3 <X, Xg < %]

=Fx (X)) Fx(X2)Fx(X)
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The mean of iid S.P.:
mx(n) = E[X,] =m forall n; Constant mean

if m#ny: Cyx(n,np)=E[Xy —m|X,, —m)|
= E[X,,, ~mfE[X,, —m]=0
if n=n,: (:X(n,n):El(Xn—m)ZJ:a2
Because: Cyx (n,ny) =Ry (ng,n,)—m?, which results in:
Cx (M,np) =R (g, np) —m?

= Ry (N, Np) =C x (M, Np) +m?

Ex:6.11  Bernoulli R.P. : i.i.d. Bernoulli R.V. I, from a set {0,1}, where
I, : Indicator function for the event a light bulb fails & replaced on day n.

FIGURE BA
& & v
EEE LR L [ RRE R H ] i T
PracEss, o= Tirdaes il g |
101 (R0 15 ks @] 15 g Lasi)
{1 (b A=zl ational &
1T [AECEES, O dE
gmbar of fight bulbrs
TEnE S ED L B3 NI
T el e e
Cylz = p(l_p) i = ] T ; -Iu ..; =

Find Prob. that first 4-bits fa)
are 1001:

ikl

P[li=1,1,=0,13=0, 1, = 1] = p(1-p)(1-p)p = p*(1-p)°
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Sum Process:
LetSn:X1+X2+...+Xn n:1,2,...
= Sn-l"' Xn;

pmf/pdf of S, is found by convolution or characteristic equation methods. The
block diagram shows a counting process:

FIGUAE B.5 -

Tha stm prazess = h
A RS §
5 = 01, c31 b gerendtind
s Lol
filhe§ w3y fa

E[S,,]=mg (n) = nE[X]=nm
o2 =no} =no?

Cs (n,k) = E[(Sn —E[Sn Sk —E[Sk])]
E[(S,, —nm)(Sy —km)|]

Sl B

n k

=3 ¥ E[X;-m)x;-m]]
i=1j=1
Cx (i, j)=025;
which yields:
min{n,k} ”
Cs(nk)= C x (i,i) = min(n,k)o
i=1
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6.7a First Order autoregressive process
Both Linear Prediction
ARMA _ — Linear estimation of o
Autoregressive < s Find -a.
II\\/Iovmg lIR or Recursive Filter
6.7b  Moving Average
~ FIR Filter
Examples of Continuous-Time Stochastic Processes
(As a limit of Discrete-Time Stochastic Processes)
Poisson Process
FIGURE &3 .
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e Events occur

randomly at a rate A

These lecture notes are prepared by Hiseyin Abut for Leon-Garcia text, August 2006



111

e Let N(t) be the number of occurrences in time interval [0,t]. N(t) is non-
decreasing, integer-valued, continuous-time R.P.
e Let[0,t] be divided into n-intervals of duration & = t/n and assume

1) Probability of more than one event occurring in a subinterval is negligible.
= Bernoulli Trial
2) Event occurrences in a subinterval is independent of activities in other
subintervals
= Bernoulli Trials are Independent
= N(t) is counting process that counts number of success in n-trials. Keeping
np = At fixed, letn —> oo and p — 0. Then we have a poisson distribution
with parameter At
= Poisson Process N(t) in the interval [0,t] has Poisson distribution with

2
PMKD:k]:g%%e‘M for k=012,

The independent and stationary increments property leads us to write for t; <t,:
PIN(t) =i,N(t2) = j]=P[N () =i[P[N(t2) - N(t) = j -]
=P[N(t) =iP[N(t; -t;) = j-i]
Me—ﬂh .—(Z(t2 _tl))J_l e Alt2—t)
i (j—i)!
Autocovariance of N(t) for t; < t;:
Cn(tt2) = E[(N(t) — 2t (N (tp) - Aty )]
= E[(N(ty) - A {N (t2) = N (ty) — Atp + At + N(t) — 2t }]
Cn (ty.t2) = E[(N(t) — M)JE[N (t2 —t) — 2(t, — )]+ VAR[N (t)]
0
=VAR|[N (ty)] = 2t; Since t; <t,

In general we have:
Cn (ti,tp) = Aminity,tp )

Ex: 6.19 15 Inquires/minute; A Poisson Process Find P[N(10) = 3 and N(60) —
N(45) = 2]
Poisson = indep increment & stationary increment

PN (10) = 3 and N(60) ~ N(45) = 2] = P[N(10) = 3]P[N(60) - N(45) = 2]
= P[N(10) = 3]P[N (60 - 45) = 2]
(10/4)° 1074 (15/4) ¢ 15/
3! 21
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Ex: 6.22 Random Telegraph Signal
X(@®)is+£l P[X(0)=+1]=1/2 X(t) is Poisson with rate a
Probability mass function (pmf):

FIGURE B2 i
mingls (i 6§ IRkn
l2hepazhsignal The

limes bdween ranshizeg £oae

iid zezerential randon
ARpon ') = i
vtahks D —X, Xy Xy f— X =7

£

P[X (t) = #1] = P[X (t) = 1| X (0) =1]P[X (0) =1]+ P[X (t) = +1| X (0) = -1]P[X (0) = 1]

Since X(t) has same polarity as X(0) only when even number of events
P[X (t) = +1| X (0) =1]= P[N(t) = even integer]

— e—at%{eat+e—at}:%{1+e—2at}

X(t) and X(0) differ in sign with odd number of events:

w(at)2j+1
P[X(t)=+1| X(0) =1]= ¥ 71—~
[X(t) = +1| X (0) =1] j§0(2j+1)!e

—-at

Therefore,

PIX () =1]= == {1+ 20t}+

N
N~

P[X (t) =-1]=1-P[X (t) =1] =
Thus signal is equally likely to be + 1. Next we find the mean, variance and
autocovariance functions.
my () = (2)-P[X (1) =1]+ (-2)-P[X () = -1]=0
VAR[X (©)]= E[X (12 ]= 0 - P[x ) = 1]+ (<27 - P[x (1) = 1] =1
Cx (t 1) = E[X (t) X (t2)]= OP[X (t,) = X (t,) ]+ (- LP[X (t) = X (t,)]

1{ ~2alt,t }
=1+ 2t
> 1TE
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Note: Time samples of X(t) become less correlated as time between them
increases. Also it does not matter which time is greater.

Ex: 6.23  Filtered Poisson Impulse Train: Zero at t = 0 and increases by one
unit at random arrival times:  S;,1=1,2,...

N(t) = Sut—S)  N(0)=0
i=1

We can view N(t) as the integral of a train of delta functions
Z(t)=2o(t-5;)
i=1

We can obtain other continuous-time processes by replacing the step function by
another function h(t)—Figure 6.10b.

FIGLRE K.1%a
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Xin
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Ex: 6.24 Shot Noise: h(t) is the current pulse generator when a photoelectron
hits a detector.

X () = Sht—$;)
i=1

Find expected value: E[X(t)]=E[E[X (t)|N(t)]], where N(t) is number of impulses
that occurred up to time t

E[E[X(t)N(t) =k]|= E{ilh(t—s ,—)} = ilE[ha—s )l
i= i=

Since independent and uniformly distributed in interval [0,t]:
E[h(t—Sj)]=ih(t—s)$=%zh(u)du
Thus:
E[X () |N(t) = k]=%}h(u)du
and :
EIXOIN®]= Nf” fhw)du
Finally, we obtain:
e[x 0]- Elelx 0 Inw])- VO S Ty

_ ﬂ}h(u)du where E[N(1)]=
0

The integral is finite, as t becomes large E[N(t)] — constant

(Skip Wiener Process and Brownian Motion)

Stationary Random Process (Strictly Stationary)

e Nature of randomness stays unchanged with time (Independent of time
origin).

e A discrete-time or continuous S.P. X(t) is stationary if the joint distribution of
any set of samples does not depend on the time origin:

F X (t)- X (t) Ko X)) = F X (g +2) X (ty +7) (K00 Xk)

forall ©, all k, and all choices of ty, ..., t
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e First-order cdf of a stationary R.P. must be independent of t.
Fxt)y(¥)=Fx@t+r)(X)=Fx(x) VtVr
My =EX®)]=m vt
VAR[X (t)]=c? Vvt
e 2" order cdf of a stationary R.P. can depend only on the time difference
between the samples:
FX ()X (t) 0 %2) = Fx )X (t,-t) . X2) Vi tp
Rx (tutp)=Rx (to—t1)=Rx (r)  wherez=t; -t
Cx (tp)=Cx(ta—t1)=Cx(r)  wherer=t,-t

Ex: 6.26  Show i.i.d. R.P. is stationary:
F X (t)-X (t) (X X0 Xi) = F x (%) F x (X2)-+-F x (X¢)
= F X (ty+7)-- X (t, +7) (X0 Xk )

forall k, ty, ...,
Therefore, i.i.d. R.P. is stationary.

Ex: 6.27  Issum process a discrete-time stationary process?

S, =X+ Xo+ ...+ X, where X; are iid sequences
ms(n) = nm VARI[S,] = no®

Mean and Variance are not constant but linear with time index n, thus sum
process cannot be a stationary process.

Ex: 6.28  Show Random Telegraph Signal of Ex: 6.22 is stationary.
Need to show that:

P[X () =ay,... X (t,) =ax |=P[X (t; +7) = a,..., X (t, +7) = ay ]
for any k, any t; < - <ty, and a; = 1.

Since the Poisson process has the independent increments property:
P[X(t,)=a,,.,X(t)=a,]=P[X(t)=2a]P[X(t,)=a, |X(t)=a,] -

P[X (tk) = | X (tkfl) = akfl]
Since the values of the random telegraph at ty, ... , tx is determined by time
intervals (tj, tj+1):
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P[X(t, +7)=a,,.. X(t +7)=a,]
=P[X(t,+7)=a,|P[X(t, +7)=a, | X(t, +7) =4, ]
P[X t, +7)=a Xt +7)= ak—l]

The transition probabilities in the above two equations are equal since
Plx(tj+1) =aj, | X(t;) =ajJ

%{1+e—2a(tj+1_tj)} if a; =a;
%{1_e—2a(tj+l_tj)} if aj #ajy
—P[X (047 =8 X ) =4

Thus they differ only in the first term
PIX(t)=a] and P[X(t +7)=a]

if P[X(0)==+1]=1/2

then:
P[X(t,)=a]=1/2, P[X(t,+7)=a,]=1/2

Therefore,
P[X(t)=a,,.,X(t)=ac]=P[X({t +7)=a,., Xt +7)=a,]
The process is stationary.

If P[X(0)=%1]#1/2 they are not equal.

However,
P[X(t) =a]=P[X (t) = a| X (0) = a1]
Live2t) ifa=1

_J12

%{1—(;20&} if a=-1

for small t, X(t) is close to 1; but as tincreases X(t)=1=%
thus as t becomes large the joint pmf’s become equal. Therefore when the
process settles down into “steady state” is becomes stationary.
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Wide-Sense Stationary Random Processes
A discrete-time or continuous-time random process X(t) is wide-sense stationary
(WSS) if
mx(t) =m for all t,
and
Cx(tl, tg) = Cx(tl- tg) for all i, L

X(t) and Y (t) are jointly wide-sense stationary if they are both wide-sense
stationary and if their cross-covariance depends only on t;- t,

Cxy(t1, t2) = Cxv(1) and  Rxvy(t, t2) = Rxy(1) T=0L-1

All stationary random processes are wide-sense stationary.

Ex: 6.29 X, : Two interleaved sequences of indep. random variables.
Forneven X, =41  p=1/2

Fornodd X, =1/3,-3 p=29/10and 1/10
my (n) =0 for all n

[EDGIEDGI=0 i ]
Ox )‘{E[xizlzl =

Therefore, X, is wide-sense stationary.

Properties of WSS processes:

1. Autocorrelation functionatt=0 =  average power
Rx (0)=E[x®)?2| forallt

2. Autocorrelation function is an even function of t:
Rx () = E[X (t+ )X )] = E[X ©)X (t - 7)] = Rx (~7)

3. Autocorrelation function is a measure of the rate of change of random
processes:

PIIX (t+7)-X()|>¢]= Pl(X(t+r)—X(t))2 >52]

. E[(X(t+r)—X(t))2]
< ..

< 2Rx (9 -Rx ()}

82
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4. Autocorrelation function is maximum at t = 0. Because,
E[XYF <E[X?.E[Y?]
Rx (7)% = E[X (t+ )X (t)]* < E[X *(t + 0)].E[X*(1)] = Rx (0)?

5. 1f Rx(0)=Rx(d) then Rx (7) is periodic with period d and X(t) is
mean-square periodic i.e. E|_(X (t+d)-X ('[))2 J= 0

6. Rx (7) approaches the square of the mean of X(t) as T —

Let X(t) = m + N(t), where N(t) is a zero-mean process for which
Rx (r)—>0as T — oo, then

Rx (7) = E[(m+ N(t+7)m+N(t))]=m? + 2mE[N (t)]+ Ry (7)

:m2+RN(T)—)m2 as 7 —

Ex: 6.30
Fig 6.12a is autocorrelation function for random telegraph signal

RX (Z’) — e—ZaM

Fig 6.12b is the autocorrelation function for a sinusoid
2

Ry () = a?cos(Zn )

Fig 6.12c is autocorrelation function for the process
Z)=X@®) +Y({)+m

Where X(t) is random telegraph process, Y (t) is sinusoid with random phase, and
m is constant. X(t) and Y(t) are independent.
Rz () = E[{(X(t+2)+Y (t+7) +m{X (t)+Y (t) + m}]

= Rx (¢) +Ry (¢) + m?
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FIGURE 212
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(Skip Wide-Sense Stationary Gaussian Random Processes)
(Skip Cyclostationary Random Processes, Skip Section 6.6)

Time Averages of Random Processes and Ergodic Theorems

Sometimes we are interested in estimating the mean or autocorrelation functions
from the time average of a single realization

i
(X )y =% ij (t, &)dt
and

2T
VAR[(X (1)), ]=% 3 [1—%}@ (u)du

where u=t-t' for —-2T <u<2T
Let X(t) be a wide-sense stationary (WSS) process with my(t) = m, then

lim (X(t)); =m in the mean square sense, if and only if
—>®0
N B ]
lim— | [1-— u)du=0
Toso0 2T _£T[ ZTJCX()
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A WSS process is said to be mean ergodic if it satisfies the above conditions.
A time-average estimate for the autocorrelation function of Y(t) is

Y+ )Y (), = % }TY (t+7)Y (t)dt

The time-average autocorrelation converges to Ry () in the mean square sense if
Y(t) is mean ergodic.

For discrete case the mean and autocorrelation functions of X, are:

(Xn)r = 2T+1_Z n

1

<Xn+kxn>-|- oT + ln_an+kx

If X,, is WSS, then
E[<Xn>T]=m and VAR[X,) ]=-1- % (1 K jc (k)

2T +1¢="or 2T +1

[(X,),] is mean ergodic if VAR[<X ; >T ] approaches zero with increasing T.

Ex: 6.43 Random Telegraph Process
Cx (r) =e 2

VAR[(X (1)) ]_iij (1—Eje‘2““du <=

—4aT
j e_Z““ du = 1me ™™
2T 0 2aT

as T —> o VAR[<X (1)), ] — 0, thus process is mean ergodic.

#6.3 Fair coin toss Heads X, = (-1)" Tails X, = (-1)™*
a) Sketch
n=0 n=1 n=2
If Heads X, | |
If Tails X, 1 1 1 1

b)  Find the pmf
n even P[X, = 1] = P[Heads] = 1/2
n odd P[X, =-1] =P[Tails] =1/2
C) Find the joint pmf
k even
P[X, =1, X,k = 1] = P[Heads] = 1/2
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P[Xn=-1, Xk =-1] =P[Tails] = 1/2
P[Xn=%1, Xpk = 1] =0

k odd
P[X, =1, Xk = -1] = P[Heads] = 1/2
P[Xn =-1, Xj+k = 1] = P[Tails] = 1/2
P[Xn=%1, Xp =11]=0

d)  Find the mean and autocovariance
E[X.] =1(1/2) + (-1)(1/2) =0
k even E[Xn Xnad = (1)%(1/2) + (-1)%(1/2) = 1
k odd E[X, Xoad = (D(-1)(1/2) + (-1)(1)(1/2) = -1

#6.15 Z(t) =Xt+Y My, My, GXZ, GYZ, PxyY
a) Find mean and autocovariance of Z(t)
E[z(t)]=E[Xt+Y]=E[X]t+E[Y]=tmy +my =m,
Cz (ti. 1) = E[(Xt +Y J(Xt, +Y )| -my (t)m; (t,)
=t1t2E[X2]+ (ty. +t,) E[XY]+ E[YZ]
—tytM§ — (. + )My my —my

2 2
=tt,ox + (1. +1y)ox oy pxy +Ov

b) Find pdf of Z(t) if X and Y are jointly Gaussian r.v.
From example 4.32, (Page:222), where Z=X+Y

2
exp{— (z—tmy —my) }

2(t20')2( +2t0x0’ypxy +O'Y2)

fz9(2)=

\/27Z'(t20)2( +2toy oy pxy + 03)
#6.53 X(t) = Acoswt + Bsinwt A, B iid, zero mean

a) Show X(t) is WSS
E[X (t)]= E[Acoswt + Bsin wt]

= E[A]coswt + E[B]sinwt =0
Cyx (t,t,) = E[(Acoswt; + Bsin wt;  Acoswt, + Bsinwt, )]
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Cyx (t;,t,) = E[A?]coswt, coswt, + E[B?]sinwt, sinwt,
+ E[A]E[B]coswt; sin wt, + E[ A]JE[B]sin wt; coswt,
= E[A%]coswt, coswt, + E[B?]sin wt; sinwt,

= E[A?]{coswt, coswt, + Sin wt; sin wt,}

%cos w(t; —t,)

where we assumed E[A?]= E[B?]
_ % E[A%]cosw(t; —t,) = % E[A%]coswr

- X(t) is WSS

b) Show X(t) is not strictly-stationary
E[X 3(t)J: El(Acoswt + Bsin Wt)3J
= E[A3 cos® wt + 3A%B cos? wt sin wt + 3AB? coswt sin? wt
+B?sin® wt]
= E[A3 ]cos3 wt + E[B:)']sin3 wt = E[A3 Icos3 wt + sin® wt)
= ﬂ'ﬂ{B(cos wt +sin wt )+ (cos 3wt — sin 3wt )}

these terms depend on t explicitly

moment of X(t) depends explicitly on time-origin
= X(t) is not strictly-stationary

#6.78 Find variance of Example 6.42 page 379.
X({)=A  Aiszero mean, unit-variance r.v.
E[X(t)]=E[A]=0

E[X ()X (t,)]= E[A2]=1
u

1 2T 1 2T u
VAR[<X(t)>T]=E jT El_EJCX (u)du =2 (j) (1—Ejdu ~1

= This process is not mean-ergodic
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