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Chapter 6: Stochastic (Random) Processes 
 
Let outcomes ξ from S be such that, for ξ ∈ S we assign a function of time 
according to some rule: 
    X(t,ξ)  where t ∈ I 
1) The graph of X(t,ξ) for a fixed ξ is called a realization. 
2) For each fixed tk the set X(tk,ξ) is a r.v. 

⇒ Indexed family of r.v.   ⇒  Stochastic Process 
 
• If the index set “I” is If “I” is continuous, then it is a continuous-time 

stochastic process. 
• If discrete-time then, we have a discrete-time stochastic process. 

Ex:  6.1  Random Binary Sequence  
ξ selected randomly in interval S = [0,1]   b1b2… binary expansion of ξ , then 

 ;   where b∑=
∞

=

−

1
2

i

i
ibξ i ∈  {0,1} 

Define X(t,ξ) = bn   n = 1,2,… The result is a sequence of binary numbers. 
 
Ex: 6.3  Find P[X(1,ξ)=0] and P[X(1,ξ)=0 and X(2,ξ)=1] 

  [ ]
[ ] 4/12/14/1]1),2(0),1([
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PXandXP

PXP  

Sequence of k bits has subinterval of length 2-k . 
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Ex:  6.2  Random Sinusoids 
 

ξ  in interval S = [-π,π] 
Define Y(t,ξ) = Cos(2πt+ξ) 
 
Time-shifted versions 

ξ  in interval S = [-1,1] 
Define X(t,ξ) =ξcos(2πt) 
 -∞ < t < ∞ 
Amplitude versions 

Ex:  6.4 Find pdf of X(t0,ξ) and Y(t0,ξ) of Ex:  6.2 
• If cos(2πt0) = 0 , X(t0,ξ)  = 0    ⇒  )()()( 0

xxf tX δ=     

• Else, X(t0,ξ) is uniformly distributed in [-cos(2πt0), cos(2πt0)], since 
X(t0,ξ) is uniformly distributed in [-1,1] 
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Note: pdf of X(t0,ξ) depends on t0.
 

Y(t0,ξ) has an arcsine distribution (see Ex: 3.28). 
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Note: pdf of Y(t0,ξ) does not depend on t0.
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Random Process Specification: 
Let X1, X2, …, Xk be k   r.v.’s obtained by sampling a Random Process X(t,ξ)  at 
times t1, …, tk

 X1 = X(t1,ξ) ,  X2 = X(t2,ξ) ,…, Xk = X(tk,ξ) 
 
Then a stochastic (random) process is specified by the collection of kth order joint 
cdf: 

 [ ]kkkXX xXxXxXPxxxF k
≤≤≤= ,...,,),...,( 221121...1  

 
If Stochastic Process is discrete then pmf can be used to specify Stochastic 
Process 

 [ ]kkkXX xXxXxXPxxxp
k

==== ,...,,),...,( 221121...1  
If Stochastic Process is continuous-valued the pdf can be used to specify 
Stochastic Process: 

  ),...,( 21...1 kXX xxxf
k

 
A Stochastic Process X(t) has independent increments if for any k and any choice 
of sampling instants: 
 
 t1 < t2  < … <tk,    the random variables 
 X(t2) – X(t1 ) … X(tk) - X(tk-1)    are independent 
 
Then the joint pdf (pmf) of  X(t1 ) … X(tk)  is given by the product of marginal 
pdf (pmf). 
 
A Stochastic Process is Markov if the future of the process given the present is 
independent of the past: 
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If X(t) is continuous, but for discrete X(t) the expression becomes 
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Mean function: 

  [ ] ∫==
∞

∞−
dxxfxtXEtm tXX )()()( )(

In general the mean function is a function of time. 
 
Autocorrelation function (joint moment): 
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Autocovariance function: 
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Variance of X(t): 
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Correlation Coefficient: 

),(),(
),(),(

2211

21
21 ttCttC

ttCtt
XX

X
X =ρ     with the property:     1),( 21 ≤ttXρ  

 
Ex: 6.6  Let X(t) = Acos2πt. Find mean, autocorrelation and autocovariance 

[ ] [ ] tAEtAEtmX ππ 2cos2cos)( ==  

 
Note: The mean function is time-dependent. 
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Ex:  6.7  Let X(t) = cos(wt+θ) , where θ is uniformly distributed in (-π,π). Let us  
find mean, autocorrelation and autocovariance. 
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Note:  mX(t) is constant and CX(t1,t2) depends only on |t1-t2|. 
 

Gaussian Random Process: X(t) is a Gaussian S.P. if the samples X1 = X(t1), 
…, Xk = X(tk) are jointly Gaussian with 
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Ex 6.8  Xn is iid Gaussian r.v. with m and σ2, then 
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Two or more variable Random Process:  
1. For a pair of S.P. X(t) and Y(t′) all possible joint density functions must be 

specified for all choices of t1,…,tk and t1′,…,tk′. 
2. X(t) and Y(t′) are independent iff the vector r.v. X and Y are independent 

for all k, j and all choices of t1,…,tk , t1′,…,tk′. 
3. Crosscorrelation:  RXY(t1,t2) = E[X(t1)Y(t2)] 

X(t) and Y(t) processes are orthogonal if RXY(t1,t2) = 0   for all t1 and 
t2

4. Cross-Covariance:  CXY(t1,t2) = RXY(t1,t2) - mX(t1)mY(t2) 
X(t) and Y(t) are uncorrelated if CXY(t1,t2) = 0   for all t1 and t2

Ex:  6.9 Given a process with )sin()()cos()( θθ +=+= wttYandwttX , where θ  is 
uniformly distributed in ].,[ ππ−  Find cross-covariance. 

 

[ ]

))(sin(
2
1

)2)(sin(
2
1))(sin(

2
1

)sin()cos(),(

21

2121

2121

ttw

ttwttwE

wtwtEttR XY

−−=

⎥⎦
⎤

⎢⎣
⎡ +++−−=

++=

θ

θθ

 

Ex:  6.10 Given an additive noise channel with a model:  Find 
cross-correlation. Assume that X(t) and N(t) are independent 

)()()( tNtXtY +=
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  Independent 
 
 
Examples of Discrete-Time Stochastic Processes: 
 
Given  iid Stochastic Process:  Xn : discrete iid r.v. with common, m, σ2

 Then, Xn – sequence is called iid R.P. and for any time instants n1, …,nk
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The mean of iid S.P.: 
   mX(n) = E[Xn] = m     for all n;     Constant mean 
  

( )( )[ ]
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Because: 2
2121 ),(),( mnnRnnC XX −= , which results in: 
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Ex: 6.11 Bernoulli R.P. : i.i.d. Bernoulli R.V.  In from a set {0,1}, where  
           In :  Indicator function for the event a light bulb fails & replaced on day n. 
 

P[I1 = 1, I2 = 0, I3 = 0, I4 = 1] = p(1-p)(1-p)p = p2(1-p)2

 
mI(n) = p 
σI

2 = p(1-p) 
 
Find Prob. that first 4-bits 
are 1001: 
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Sum Process: 
 Let Sn = X1 + X2 + … + Xn  n = 1,2,… 
   = Sn-1 + Xn, 
 
pmf/pdf of Sn is found by convolution or characteristic equation methods.  The 
block diagram shows a counting process: 
 

  
[ ] [ ] nmXnEnmSE Sn === )(  

  222 σσσ nn XSn
==
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 6.7a First Order autoregressive process 

 Linear Prediction 
  →  Linear estimation of α 

→ Find -α 
IIR or Recursive Filter 

6.7b Moving Average 
 FIR Filter 

 Both 
“ARMA” 
Autoregressive 
Moving 
Average

 
 
 
 
 
 
Examples of Continuous-Time Stochastic Processes 
 (As a limit of Discrete-Time Stochastic Processes) 
Poisson Process 

• Events occur randomly at a rate λ 
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• Let N(t) be the number of occurrences in time interval [0,t].  N(t) is non-
decreasing, integer-valued, continuous-time R.P. 

• Let [0,t] be divided into n-intervals of duration δ = t/n and assume 
 
1) Probability of more than one event occurring in a subinterval is negligible.          

 ⇒ Bernoulli Trial 
2) Event occurrences in a subinterval is independent of activities in other 

subintervals  
⇒ Bernoulli Trials are Independent 
⇒ N(t) is counting process that counts number of success in n-trials.  Keeping 

np = λt fixed, let n → ∞ and p → 0.  Then we have a poisson distribution 
with parameter λt 

⇒ Poisson Process N(t) in the interval [0,t] has Poisson distribution with 
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The independent and stationary increments property leads us to write for t1 < t2: 
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Autocovariance of N(t) for t1 < t2: 
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In general we have: 

{ }2121 ,min),( ttttCN λ=  
 
Ex:  6.19  15 Inquires/minute; A Poisson Process  Find P[N(10) = 3 and N(60) –
N(45) = 2] 

Poisson ⇒ indep increment & stationary increment 
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Ex: 6.22 Random Telegraph Signal 
 X(t) is ±1 P[X(0)= ±1]=1/2 X(t) is Poisson with rate α 
Probability mass function (pmf): 
  

 
[ ] [ ] [ ] [ ] [ ]1)0(1)0(|1)(1)0(1)0(|1)(1)( −=−=±=+==±==±= XPXtXPXPXtXPtXP  

 
Since X(t) has same polarity as X(0) only when even number of events   
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X(t) and X(0) differ in sign with odd number of events: 
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Thus signal is equally likely to be ± 1. Next we find the mean, variance and 
autocovariance functions. 
 ( ) [ ] ( ) [ ] 01)(11)(1)( =−=⋅−+=⋅= tXPtXPtmX  
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Note:  Time samples of X(t) become less correlated as time between them 
increases.  Also it does not matter which time is greater. 
 
Ex: 6.23 Filtered Poisson Impulse Train: Zero at t = 0  and increases by one 
unit at random arrival times:    Sj , i = 1,2,… 

   0)0()()(
1

=∑ −=
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NStutN

i
i

We can view N(t) as the integral of a train of delta functions 

   ∑ −=
∞

=1
)()(

i
iSttZ δ

We can obtain other continuous-time processes by replacing the step function by 
another function h(t)—Figure 6.10b. 
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Ex:  6.24 Shot Noise:  h(t) is the current pulse generator when a photoelectron 
hits a detector.  

∑ −=
∞

=1
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i
iSthtX  

Find expected value: [ ] [ ][ ])(|)()( tNtXEEtXE = , where N(t) is number of impulses 
that occurred up to time t 
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Since independent and uniformly distributed in interval [0,t]: 
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The integral is finite, as t becomes large E[N(t)] → constant 
 

(Skip Wiener Process and Brownian Motion) 
 

Stationary Random Process (Strictly Stationary) 
• Nature of randomness stays unchanged with time (Independent of time 

origin).  

• A discrete-time or continuous S.P. X(t) is stationary if the joint distribution of 
any set of samples does not depend on the time origin: 

),...,(),...,( 1)()(1)()( 11 ktXtXktXtX xxFxxF kk ττ ++= LL  

         for all τ , all k, and all choices of t1, …, tk

These lecture notes are prepared by Hüseyin Abut for Leon-Garcia text, August 2006 



 115

• First-order cdf of a stationary R.P. must be independent of t. 

[ ]
[ ] ttXVAR

tmtXEm

txFxFxF

tX

XtXtX

∀=

∀==

∀∀== +

2
)(

)()(

)(

)(

,)()()(

σ

ττ

 

• 2nd order cdf of a stationary R.P. can depend only on the time difference 
between the samples: 
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Ex:  6.26 Show i.i.d. R.P. is stationary: 
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for all k, t1, … , tk.    
Therefore,  i.i.d. R.P. is stationary. 
 
Ex:  6.27 Is sum process a discrete-time stationary process? 
 
 Sn = X1 + X2 + … + Xn  where Xi are iid sequences 
 mS(n) = nm VAR[Sn] = nσ2

 
Mean and Variance are not constant but linear with time index n,  thus sum 
process cannot be a stationary process. 
 
Ex:  6.28 Show Random Telegraph Signal of Ex:  6.22 is stationary. 

Need to show that: 
[ ] [ ]KkKk atXatXPatXatXP =+=+=== )(,...,)()(,...,)( 1111 ττ

 for any k, any t1 < ⋅⋅⋅ < tk, and aj = ±1. 
 
Since the Poisson process has the independent increments property: 
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Since the values of the random telegraph at t1, … , tk is determined by time 
intervals (tj, tj+1): 
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The transition probabilities in the above two equations are equal since 
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Thus they differ only in the first term 
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Therefore, 
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The process is stationary. 

If they are not equal. [ ] 2/11)0( ≠±=XP
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for small t , X(t) is close to 1;  but as t increases  X(t) = 1 ⇒ ½ 
thus as t becomes large the joint pmf’s become equal.  Therefore when the 
process settles down into “steady state” is becomes stationary. 
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Wide-Sense Stationary Random Processes 
A discrete-time or continuous-time random process X(t) is wide-sense stationary 
(WSS) if 

mX(t) = m for all t,      
and 

CX(t1, t2) = CX(t1- t2) for all t1, t2
 
X(t) and Y(t) are jointly wide-sense stationary if they are both wide-sense 
stationary and if their cross-covariance depends only on t1- t2

CXY(t1, t2) = CXY(τ) and  RXY(t1, t2) = RXY(τ)  τ = t2 - t1
 

All stationary random processes are wide-sense stationary. 
 
Ex:  6.29 Xn :  Two interleaved sequences of indep. random variables.  

For n even  Xn = ±1  p =1/2 
 For n odd   Xn = 1/3, -3     p = 9/10 and 1/10 
  nallfornmX 0)( =  

   
⎩
⎨
⎧

==

≠=
=

jiXE
jiXEXE

jiC
i

ji
X 1][

0][][
),( 2

 
Therefore, Xn  is wide-sense stationary. 

 
 
Properties of WSS processes: 
1. Autocorrelation function at τ = 0 ⇒ average power 
  [ ]2)()0( tXERX =  for all t 

2. Autocorrelation function is an even function of τ: 
  [ ] [ ] )()()()()()( ττττ −=−=+= RtXtXEtXtXER XX  
3. Autocorrelation function is a measure of the rate of change of random 
processes:  
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4. Autocorrelation function is maximum at τ = 0. Because, 
[ ] ][].[ 222 YEXEXYE ≤   

22222 )0()]([)].([)]()([)( RtXEtXEtXtXER XX =+≤+= τττ  
 
5. If     then   )()0( dRR XX =  )(τR X   is periodic with period d and X(t) is 

mean-square periodic    i.e.  ( )[ ] 0)()( 2 =−+ tXdtXE  
 
6. )(τR X  approaches the square of the mean of X(t) as τ → ∞ 
 
Let X(t) = m + N(t),  where N(t) is a zero-mean process for which 

)(τRX → 0 as τ → ∞ , then 

 ( )( )[ ] [ ]
∞→→+=

++=+++=

ττ

τττ

asmRm
RtNmEmtNmtNmER

N

NX
22

2

)(

)()(2)(()(  

 
Ex:  6.30  
Fig 6.12a is autocorrelation function for random telegraph signal 
 eRX

τατ 2)( −=  
 
Fig 6.12b is the autocorrelation function for a sinusoid 

 )2cos(
2

)( 0

2
τπτ fa

RX =  

 
Fig 6.12c is autocorrelation function for the process  

Z(t) = X(t) + Y(t) + m 
 

Where X(t) is random telegraph process, Y(t) is sinusoid with random phase, and 
m is constant.  X(t) and Y(t) are independent. 

 
{ }{ }[ ]
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(Skip Wide-Sense Stationary Gaussian Random Processes) 
(Skip Cyclostationary Random Processes, Skip Section 6.6) 

 
Time Averages of Random Processes and Ergodic Theorems 

 
Sometimes we are interested in estimating the mean or autocorrelation functions 
from the time average of a single realization 

 ∫=
−

T

T
T dttX

T
tX ),(

2
1)( ξ  

and  
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where  u TuTfortt 22 < <−′−=   

Let X(t) be a wide-sense stationary (WSS) process with mX(t) = m, then 
 mtX TT

=
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A WSS process is said to be mean ergodic if it satisfies the above conditions. 
A time-average estimate for the autocorrelation function of Y(t) is 

 ∫ +=+
−

T

T
T dttYtY

T
tYtY )()(

2
1)()( ττ  

The time-average autocorrelation converges to )(τRY  in the mean square sense if  
Y(t) is mean ergodic. 
 
For discrete case, the mean and autocorrelation functions of Xn are: 
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If Xn is WSS, then  

mXE Tn =][      and    [ ] ∑ ⎟⎟
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][ TnX  is mean ergodic if [ ]
TnXVAR  approaches zero with increasing T. 

 
Ex: 6.43  Random Telegraph Process 
 eC X

τατ 2)( −=  
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as T → ∞  [ ]

T
tXVAR )(  → 0 , thus process is mean ergodic. 

 
#6.3 Fair coin toss Heads Xn = (-1)n  Tails Xn = (-1)n+1

a) Sketch 
     n=0 n=1 n=2 … 
 If Heads Xn    1  -1   1  -1 … 
 If Tails Xn   -1   1  -1   1 … 
b) Find the pmf 

n even P[Xn = 1] = P[Heads] = 1/2 
n odd  P[Xn = -1] = P[Tails] = 1/2 

c) Find the joint pmf 
k even 
  P[Xn = 1, Xn+k = 1] = P[Heads] = 1/2 
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  P[Xn = -1, Xn+k = -1] = P[Tails] = 1/2 
  P[Xn = ±1, Xn+k = 1] = 0 m

k odd 
  P[Xn = 1, Xn+k = -1] = P[Heads] = 1/2 
  P[Xn = -1, Xn+k = 1] = P[Tails] = 1/2 
  P[Xn = ±1, Xn+k = ±1] = 0 

 
d) Find the mean and autocovariance 

E[Xn] = 1(1/2) + (-1)(1/2) = 0 
k even E[Xn Xn+k] = (1)2(1/2) + (-1)2(1/2) = 1 
k odd  E[Xn Xn+k] = (1)(-1)(1/2) + (-1)(1)(1/2) = -1 

 
#6.15  Z(t) = Xt + Y mX, mY, σX

2, σY
2, ρXY

a) Find mean and autocovariance of Z(t) 
[ ] [ ] ZYX mmtmYEtXEYXtEtZE =+=+=+= ][][)(  
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b) Find pdf of Z(t) if X and Y are jointly Gaussian r.v. 

From example 4.32, (Page:222), where Z=X+Y 
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#6.53  X(t) = Acoswt + Bsinwt  A, B iid, zero mean 
 
a) Show X(t) is WSS 

[ ] [ ]
0sin][cos][

sincos)(
=+=

+=
wtBEwtAE

wtBwtAEtXE
 

( )( )[ ]221121 sincossincos),( wtBwtAwtBwtAEttC X ++=  
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∴ X(t) is WSS 
 
b) Show X(t) is not strictly-stationary 
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moment of X(t) depends explicitly on time-origin 
⇒ X(t) is not strictly-stationary 

#6.78  Find variance of Example 6.42 page 379. 
  X(t) = A A is zero mean, unit-variance r.v. 
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⇒ This process is not mean-ergodic 
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