EE-553 Stochastic Signals

Class Schedule: Tuesdays and Thursdays 12:30-13:45 Classroom: E423 Office: 403F

Office Hours: Mondays & Wednesdays: 13:10-14:45; Tuesdays 17:00-18:00

Tez Leo	xt: on-Garcia	Probability and Random Processes for Electrical Engineers by
		Addison-Wesley 1994, 2 nd Edition
Rei Edi	ference: ition	Probability and Stochastic Processes by Papoulis, McGraw-Hill 2 nd
Outline:		Closely follow text – Chapters 1-7 with some outside examples Time permitting, limited coverage Chapters 8-9
Performance Evaluation: (Temporary until Grader situation is finalized.)		
1.	2 Midterms (Dates and Percentages will be decided in class by consensus.)	
2.	Final (40% if no 7	ΓA ; 35% if there is a TA to grade the assignments)

3. Homeworks. (If there is a TA for the course, percentage will be decided in class by consensus.)

INTRODUCTION AND APPROACH TO RELIABLE COMMUNICATION SYSTEMS

) Probabilistic methods in making decisions about the transmitted/received message (Is $m = \hat{m}$?) (EE553).

) *m*: {m_i; i = 1,2,3,...} messages are generally finite but they could be very large. Soure Coding (EE652).

 \hat{m} : { \hat{m}_i ; $j = 1, 2, 3, \dots$ } : reconstructed message.

In reliable communication systems $m = \hat{m}$ usually (very often)!!!

Detection Theory and Decoders (EE653).

3 Signal Theory (EE650, EE558). Electrical signals transmitted thru a medium of transmission (channel) usually corrputed by an additive noise n(t) to form a received signal

(4)
$$r(t) = s(t) + n(t)$$
 (*)

Most common model for channel (*) is additive White gaussian Noise (AWGN) model. (EE650, EE558)

Signals: $s(t) = \{s_i(t); i = 1, 2, 3, \dots\}$ for every message symbol m_i we generate a signal $s_i(t)$ and it is encoded for reliable communication thru a given channel.

White or bandlimited Gaussian Noise

Impulse noise, shot noise

n(t) =

 $r(t) = \{r_j(t); j = 1, 2, 3, \dots\}$ noisy received signals. They may even be lost or added in the channel.

 $u(t) = \{u_i(t); i = 1, 2, 3, \dots\}$ detected and decoded signal, and finally

 $\hat{m} = \{\hat{m}_{i}(t); j = 1, 2, 3, \cdots\}$ reconstructed message.

Task: Transmit '*m*' as a message symbol to represent a random behavior of the source (more unknown Source is more to communicate!!!) and receive \hat{m} . Hopefully without error and $m_i = \hat{m}_j$.

Ex: Binary Symmetric Channel:

 ε : Error in the channel